Tattu R-Line 4S 1300 mAh 95 C - Front View

Battery review: Tattu R-Line 4S 1300 mAh 95 C (V 1.0)

Publiziert von Nils Waldmann

am

I finally got my hands on the newest battery product from Gens Ace. This review is looking at the 1300 mAh version of the new Tattu R-Line 4S 95 C pack.

Appearance

The new Tattu R-Line 1300 mAh 95C packs* mostly stick to the overall design of Tattu batteries we have seen in the past. New is the yellow-ish reflecting design of the front. On the back you find a sticker that provides all the important information how to handle the battery. I really appreciate to see this stuff printed onto the pack. A lot better than giving out a small piece of paper as many other manufacturers tend to do. Gens Ace again uses transparent shrink wrapping so you can see the single cells inside your battery. The packs come in a high quality card box. The pack itself is packed in bubble wrap. A piece of foam makes sure nothing moves inside the box during transport. You also get one of theses plastics balancer wire protectors, you can assemble yourself if wanted.

Tattu R-Line 4S 1300 mAh 95 C - Box
Technical Design

The Tattu-R Line pack is a standard 4S1P config flight pack for high power use. The R-Line has been developed for racing competitions. Currently there only is the version 1.0 on the market. Gens Ace* seems to plan to release further version of the R-Line to addapt to pilots needs as best as possible. The newest version now is rated up to 95 C constant. We will see about that later.

Build Quality: Very good. Pack feels very well made on the outside. Connection terminal looks solid. A small layer of foam offers protection on the sides. The bright yellow-ish coloring looks good.

Plugs: The Tattu pack comes with standard XT60 connectors* equipped .

Cables: Gens Ace uses 12 AWG wires on this packs. The high flexible silicon layer is rated up to 200°C. Cable length is about 7 centimetres.

Balacing plugs: Standard XT-system*. Balance wires are very short (4 cm) which is a benefit in terms of getting them out of the prop-range on the aircraft. Main power line and balancer wires are coming out of the top of the pack.

Technical Details

Manufacturer Gens Ace* Tattu R-Line 4S 1300 mAh 95 C - Front View

Tattu R-Line 4S 1300 mAh 95 C - Side View

Tattu R-Line 4S 1300 mAh 95 C - Connection Terminal

Tattu R-Line 4S 1300 mAh 95 C - Top View

Tattu R-Line 4S 1300 mAh 95 C - Bottom View

(Click to enlarge.)

Type Tattu R-Line 95 C
Cell chemistry Lithium Polymere (LiPo)
Cell type Tattu R-Line
Cell count 4
Pack configuration 4S1P
Capacity 1300 mAh
Max. Charge Current ? A
Max. Discharge Current
Continuous
Burst
123.5 A
247 A
Weight
w/o plugs
with plugs

ca. 167 grams
Measurements
as listed
measured
30 x 35 x 76 mm
30 x 35 x 71 mm
Price 35.99 €
Dealer Amazon.de*
Note This battery has been directly donated by the manufacturer / distributor for review purposes.

Break-in documentation

The battery followed the standard break-in-process: The pack is charged at a rate of 1C until CV-phase ends with current of 1/10C. The break-in phase consists of four charging cycles at 1C and four corresponding discharges at 1 C / 4C / 10C and 20 C.

Anomalies: No anomalies during break-in.

Internal resistance measurements during break-in phase

Cycle Cell 1 Cell 2 Cell 3 Cell 4 Total
After first charge 1.3 1.4 2.1 1.5 6.3
After second charge 1.2 1.4 1.5 1.6 5.7
After third charge  1.4 1.1 2.0 1.3 5.8
After fourth charge  1.4 1.8 1.1 1.5 5.8

Charging process

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden


CV-Phase is very short on this cell type. Balancing in normal mode took 1:06 min. Cell drift during charge was unobtrusive. This is for 1C charge (1,3 A).

Load Testing

The main part of this battery test will consists of different load test settings showing the battery performance. Constant load testing is used to judge the advertised C-ratings as well as look at cell drift under high loads. We also check on internal resistance once more. Next up is the dynamic current test, which simulates a „real“ flight with changing (=dynamic) loads. For test methodology please check the dedicated methodology page!

Constant Load Testing

Constant load testing follows a certain load pattern of different constant currents. Base load is 10 C. Current pulses at 50 C, 35 C, 20 C and 30 C are maintained for time intervals between 10 and 20 seconds. For more details please refer to the test methodology page.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden


Capacity Usage

During this test the pack delivered 944 mAh. This is 72,6 % of nominal capacity. A solid good result.

Average cell voltages

The following table lists the average voltages per cell, of the total pack, as well as the averaged value per cell as fraction of total voltage during phase of active load.

Cell 1 Cell 2 Cell 3 Cell 4 Total Average per cell
Avg. Voltages 3.779 V 3.773 V 3.779 V 3.777 V 15.106 V 3.777 V

Just looking at average values the Tattu pack performs good. All cells stayed well above 3,7 V on average. An average value above 3,74 V / cell can be considered very good.

Focus Voltages

Exceptionally interesting when testing a battery under a constant load for a longer period of time: the lowest voltage per cell just before load impulse is disabled. On top, you should have look at voltage recovery rate, that is: how fast do cell voltages rise again once load impulse is cut.

Phase Cell 1 Cell 2 Cell 3 Cell 4 Total
End of 50 C 3.654 V 3.654 V 3.670 V 3.683 V 14.662 V
End of 35 C 3.594 V 3.591 V 3.603V 3.614 V 14.402 V
End of 20 C 3.343 V 3.265 V 3.302 V 3.386V 13.296 V
End of 30 C  –

Voltage sag is very low on the Tattu R-Line 1300 mAh pack. No cell went below 3,5 V/cell benchmark on first two load cycles. Good result!

Average voltage recovery per second

Those values are specific to the test setting and not valid for the pack in general! Still they allow an estimated guess about how fast voltages rise again after current spikes.

Cell 1 Cell 2 Cell 3 Cell 4 Total
Avg. Recovery 0.0266 V / s 0.0261 V / s 0.0243 / s 0.0216 V / s 0.0985 V /s

Voltage recovery is quick for the new R-Line 1300 mAh 80 C battery.

IR-Measurement

IR measurement is conducted using the four current pulses. Resistance for each cell is calculated in all four discharge phases. Shown values are averaged to cancel out different temperature points due to different discharge states during measurements.

Cell 1 2 3 4 Total
Resistance [mΩ] 2.36 2.31 2.07 2.24 8.99

Interpretation: The internal resistance of 2.25 mΩ average per cell indicates a „true“ C-rating of around  45 C (58.9 A). This is on the conservative side and represents a current draw that will make the pack last for a long time. Overall performance can be described as very high.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Cell drift under load

Discharge Phase 50 C 35 C 20 C 30 C
Max Cell drift (V) 0.016 V 0.023 V 0.121 V

Cell drift is low on the new Tattu R-Line 95 C packs during main discharge phase. Cell 2 is weaker to the end of the discharge cycle and creates the drift difference at the very end of the test.

Key Temperature Facts

Temperature Development - Tattu R-Line 4S 1300 mAh 95 C

Temperature Development

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Max. temp during discharge was around 54.7 °C on top of pack. Note that heating of stressed LiPo packs will continue for some more time even when load is cut.
Market Comparison

The following chart shows all reviewed LiPos in the same product segment for direct comparison of performance. Higher values under load are better.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Constant 25 C Discharge

Pretty much a standard benchmark in the LiPo industry.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Cut-Off /warning value for this battery should be chosen 3.5 V minimum. After this point voltage drops quick. The battery provided 930 mAh (71,5 %) during the 25 C discharge. A usual result for this capacity class.

Market Overview

Comparison of different reviewed 1300 mAh batteries under 25 C load.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Dynamic Load Testing

The dynamic load testing setting consists of two separate discharge scenarios that have been developed of two different real-life FPV flights. Pattern one represents a high speed low proximity flight around the open field with some hovering to the end. Average load is around 22 A. Second pattern is a free-style flight around trees in the park with some current spikes near 70 A. Average load on this flight is around 13 A due to longer floating periods.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Capacity Usage

During the test of pattern 1 the pack delivered 939 mAh. This is 72.2 % of nominal capacity. Good. In patter 2 testing 928 mAh (71.4 %) could be used until first cell reached cut-off voltage.

Market Comparison

The following charts give an overview of all tested packs in the 1300 mAh class so far.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

The last chart of this review sums up the usable capacity during all four load scenarios. Please note that this is only the capacity consumed by the electronic load! There are losses due to heating of the pack, which could be approximated (see testing methodology page). All four tests are cut when any cell goes below cut-off voltage of 3,3 V (or pack goes above 58 °C on any of the three probes). If you would push further and go down to 3,0 V/cell you will be able to squeeze out some mAh more, but at the cost of excessive heat generation and shortening of pack life-span. This value will most likely differ from what you get when flying on a quad as most people don’t monitor voltage on a per cell basis and therefore don’t even notice if voltage drops below 3,3 V/cell during punsh-outs (what’s not necessarily a good thing, though). For comparison, used capacity until 3,3 V/cell is reached is the base line in all battery reviews on Drone-Zone.de.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Conclusion

The new Tattu R-Line 4S 1300 mAh 95 C (V 1.0)* battery is a usual sized pack with a capacity to weight ratio of 7.78 mAh/g.  Build quality of this battery is excellent. The pack is rectangular shaped and keeps it shape under every load situation. Only slight smelling under heavy load. The pack still keeps its shape thanks to the metal sheets on both sides of the pack, which also help to spread heat across the outer cells. The design looks high quality. Voltage stability is good on the R-Line 95 C version 1.0. Cut-off should be chosen at 3,5 V / cell minimum. Usable battery capacity is good. Note that this pack has a slightly higher capacity than standard 1300 mAh packs. Cell matching still can be improved as one cell (number 2) is a little weaker than the rest to the end of discharge cycle. The rating of 95C is a bit over the top, of course. I would rate this pack at amazing 45 C continuous. This allows you to pull around 58.9 A without having to worry about the packs health too much. More than enough head room for most of the applications out there and one of the best result in the 1300 mAh class so far. As you can see in the dynamic loads higher current spikes are handled well. For around 36 € this pack is certainly not cheap at all. In the end you get what you pay for. Even though the performance is one of the best I have seen so far, the Tattu R-Line* is not able to win the race against the new Dinogy Ultra Graphene 2.0 1300 mAh 80 C battery. It is visible that the graphene-enabled chemistry of the Dinogy pack* makes it possible to squeeze out just a little more power  in the last third of the discharge cycle. In the end this battery is a premium product, which almost catches up with the graphene competition. If you are willing to take the price tag the Tattu R-Line most likely will not disappoint you.

Other packs of this line up tested:

Bleibt in Kontakt!

Wenn ihr über die neuesten Drohnen-News, Drohnen-Leaks, Drohnen-Gerüchte, Drohnen-Guides und Drohnen-Testberichte auf dem Laufenden bleiben möchtet, dann folgt uns gerne auf unseren Social-Media-Kanälen!

Außerdem freuen wir uns natürlich über eure Nachrichten oder Fragen in den Kommentaren!


Hinweis: Mit Sternchen (*) markierte Links sind Affiliate-Links / Partnerlinks. Mit einem Kauf über diesen Link erhalten wir als Seitenbetreiber eine Verkaufsprovision. So kannst du Drone-Zone.de ganz einfach unterstützen. Bitte beachtet, dass es sich bei Drone-Zone um eine reine Website zur Information und keinen Online-Shop handelt. Ihr könnt über unsere Seite keine Kaufverträge über die dargestellten Artikel abschließen und auch keine persönliche Beratung hierzu in Anspruch nehmen. Mehr Informationen dazu findest du hier.

Avatar-Foto

Nils Waldmann

Hi, ich bin Nils! Ich bin leidenschaftlicher Modellbauer, Hobby-Fotograf, Akku-Liebhaber und RC-Pilot. Ich berichte hier über die neusten Entwicklungen in der Drohnen-Branche und kümmere mich um detaillierte Anleitungen, Guides und Testberichte.

Schon gesehen?

Dinogy Platinum Graphene 2.0 4S - Vergleich der Höhe

Hands On Video: Dinogy Platinum Graphene 2.0 V2 Akkus

Die neue Platinum Graphene 2.0 V2 Akkus von Dinogy versprechen noch mehr Leistung bei hoher Langlebigkeit zu einem fairen Preis. Wir haben uns die Drone Racing LiPos genau angesehen. Dinogy ... jetzt lesen!

Battery test methodology (How we test LiPo batteries)

This page contains all the details about how lipo batteries are tested and what methodology is used.It is meant for those of you, who want to know exactly what is ... jetzt lesen!

CRating Lipo Was ist das

Battery Guide: What does the C-Rating of LiPo batteries stand for?

In this article we explain to you what the C-rating of LiPos is all about. You will find out what the C-Rating means for batteries and which things you should ... jetzt lesen!

Prallel Charging Board zum gleichzeitigen Laden mehrere LiPos

Überblick: LiPo Akkus parallel mit einem Ladegerät aufladen

Parallel Charging – Moderne Computerladegeräte aus dem Modellbaubereich können mit Leichtigkeit DC-Leistungen von 1000 Watt bereitstellen. Um diesen Leistung sinnvoll zu nutzen, müssen entweder Akkus mit sehr vielen Zellen geladen ... jetzt lesen!

4 Gedanken zu „Battery review: Tattu R-Line 4S 1300 mAh 95 C (V 1.0)“

  1. Avatar-Foto

    Hey Nils,

    I just found this website and I just wanted to thank you so much for your amazing work!
    I’d be really interesed to see some SLS Quantum 65C batteries tests.

    Cheers

    Antworten
    • Avatar-Foto

      Hi Herve,
      thanks for your feedback, highly appreciated! I was talking to Stefan from SLS last summer, but havn’t got the chance to get some samples from them yet. Will try to test some SLS packs in the future. Next up are Turnigy Graphene packs (finally)!

      Cheers,
      Nils

      PS: Your comment hasn’t been deleted, I just have to accept every single comment manually to fight the huge amount of spam bots these day… :(

      Antworten
      • Avatar-Foto

        No worries ;) But I think there’s an issue with the captcha. It gives me a time limit error almost every time. It’s quite difficult to post one.

        Anyways can’t wait to see the results on the Turnigy!
        Besides SLS another manufacturer in europe which I find quite interesting is EPS.
        It would be amazing if you could get your hands on one of those as well.

        Also are you using these batteries on a regular basis? So we could get an idea of their longevity.
        I’m still trying to figure out which batteries to buy for this summer.

        Happy flying ;)

        Antworten
        • Avatar-Foto

          Thanks for the info, I am going to look into the problem!

          If I find the time I will try to contact EPS and see what I can arrange in terms of testing materials.

          Rergarding long term testing: I have been using all test packs for normal flying after I published each test. As time I am spending on the field is limited, I wouldn’t draw any conclusions (yet), but so far no pack is showing any significant wear.

          Fly save! :)

          Antworten

Schreibe einen Kommentar