MRP 4S 1000 mAh 65-130 C - Front

Battery review: MRP 4S 1000 mAh 65-130 C

Publiziert von Nils Waldmann

am

MRP (Multirotorparts) has it’s own battery line-up. All 4S, all purely dedicated to mini quad racers in the world. The 1000 mAh version is the second smallest pack of the family. This review will have a closer look at the  MRP 4S 1000 mAh 65-130 C battery.

How to use charts:

This battery review contains some charts which can be interactively utilized. You are able to:Attention

  1. Highlight any value just by clicking on the corresponding key below the chart.
  2. Hover over any value / line inside the chart to get precise readings.
  3. Right axis is always current.

Have fun! :)

Appearance

The MRP lipo packs don’t feature any special design. The pack is protected by some black shrink wrapping. The sides are made of some textured white material, holding the single cells together. The front side has a colored product sticker glued to it, stating name and type of the battery. On the back you find a yellow sticker with the usual warning messages. Overall build quality is solid. No need to complain. Everything looks very well made and feels firm.

Technical Design

The MRP 4S 1000 mAh 65-130 C pack is a standard 4S1P config flight pack for high power use.

Build Quality: Very good. Pack feels very well made on the outside. Connection terminal looks solid. Shrink wrapping job is good.

Plugs: The MRP batteries come with pre-installed XT60 connectors*. Plug and play for most of the pilots. The connectors sit very firm, good quality XT60s.

Cables: MRP uses 14 AWG wires on this packs. Perfectly fine for this capacity class. The high flexible silicon layer is rated up to 200°C. Cable length is about 9 centimeters.

Balancing plugs: Standard XT-system*. Balance wires are rather short (3 cm) which is a benefit in terms of getting them out of the way on your quad. The balancer plug is equipped with some transparent housing for easier unplugging. Balancer and main power leads are placed on top and bottom of the pack.

Technical Details

Manufacturer MRP MRP 4S 1000 mAh 65-130 C - Front

Multi Rotor Parts 4S 1000 mAh 65-130 C - Back

Multi Rotor Parts 4S 1000 mAh 65-130 C - Connection Terminal

MRP 4S 1000 mAh 65-130 C - Top

MRP 4S 1000 mAh 65-130 C - Bottom,

(Click to enlarge.)

Type MRP 65-130 C
Cell chemistry Lithium Polymere (LiPo)
Cell type LiPo
Cell count 4
Pack configuration 4S1P
Capacity 1000 mAh
Max. Charge Current  5 A
Max. Discharge Current
Continuous
Burst
65 A
130A
Weight
w/o plugs
with plugs

ca. 121 grams
Measurements
as listed
measured
 74 x 34.2 x 24 mm
75.2 x 34,4 x 24 mm
Price 24.95 €
Note This battery has been directly donated by the manufacturer / distributor for review purposes.

Break-in documentation

The battery followed the standard break-in-process: The pack is charged at a rate of 1C until CV-phase ends with current of 1/10C. The break-in phase consists of four charging cycles at 1C and four corresponding discharges at 1 C / 4C / 10C and 20 C.

Anomalies: No anomalies during break-in.

Internal resistance measurements during break-in phase via iCharger 406B at 40°C pack temperature

Cycle Cell 1 Cell 2 Cell 3 Cell 4 Total
After first charge  2.2 2.5 2.3 2.5 9.5
After second charge  2.5 2.4 1.5 2.5 8.9
After third charge  2.5 2.5 1.9 2.5 9.4
After fourth charge  3.0 2.9 2.1 3.1 11.1

Charging process

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden


CV-Phase is really short on this cell type. Balancing in normal mode took 1:10 min. Cell drift during charge was unobtrusive. This is for 1C charge (1 A).

Load Testing

The main part of this battery test will consists of different load test settings showing the battery performance. Constant load testing is used to judge the advertised C-ratings as well as look at cell drift under high loads. We also check on internal resistance once more. Next up is the dynamic current test, which simulates a „real“ flight with changing (=dynamic) loads. For test methodology please check the dedicated methodology page!

Constant Load Testing

Constant load testing follows a certain load pattern of different constant currents. Base load is 10 C. Current pulses at 50 C, 35 C, 20 C and 30 C are maintained for time intervals between 10 and 20 seconds. For more details please refer to the test methodology page.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Capacity Usage

During this test the pack delivered 660 mAh. This is 66 % of nominal capacity. That’s just okay.

Average cell voltages

The following table lists the average voltages per cell, of the total pack, as well as the averaged value per cell as fraction of total voltage during phase of active load.

Cell 1 Cell 2 Cell 3 Cell 4 Total Average per cell
Avg. Voltages 3,747 3,759 3,745 3.727 14,979 3.722

Just looking at average values the MRP pack generally performs decent. All cells stayed above 3.70 V on average. An average value above 3.70 V / cell can be considered very good in this capacity class. It becomes visible that cell number four can not keep up with the performance of the other three cells.

Focus Voltages

Exceptionally interesting when testing a battery under a constant load for a longer period of time: the lowest voltage per cell just before load impulse is disabled. On top, you should have look at voltage recovery rate, that is: how fast do cell voltages rise again once load impulse is cut.

Phase Cell 1 Cell 2 Cell 3 Cell 4 Total
End of 50 C 3.501 3.525 3.511 3.530 14.066
End of 35 C  3.498 3.519 3.504 3.502 14.022
End of 20 C  3.446 3.518 3.453 3.287 14.049
End of 30 C N/A N/A N/A N/A N/A

The average cell voltage stability on the MRP pack can be considered okay. Cells dropped below 3.5 V quiet a few times during the first three current pulses. Again cell number four is clearly weaker than the rest. You get the impression that 50 C continuous already might be a little too much for this battery.

Average voltage recovery per second

Those values are specific to the test setting and not valid for the pack in general! Still they allow an estimated guess about how fast voltages rise again after current spikes.

Cell 1 Cell 2 Cell 3 Cell 4 Total
Avg. Recovery [V/s] 0.0428 0.040 0.0404 0.036 0.159

Excessive voltage sag isn’t a problem for this battery. Recovery rates after current pulses are decent, too.

IR-Measurement

IR measurement is conducted using the four current pulses. Resistance for each cell is calculated in all four discharge phases. Shown values are averaged to cancel out different temperature points due to different discharge states during measurements.

Cell 1 2 3 4 Total
Resistance [mΩ] 4.4 4.1  4.0 5.2 16.2

Interpretation: The internal resistance of 4.4 mΩ average per cell indicates a „true“ C-rating of around 37 C (36.9 A). An average value. This calculation is on the conservative side and represents a current draw that will make the pack last for a long time. The pack never made it to the last current phase in the constant current pattern, though. That’s the result of one cell not being able to keep up with the rest.

Cell drift under load

Discharge Phase 50 C 35 C 20 C 30 C
Max Cell drift (V)  0.059 0.055 0.095 N/A

The MRP prototype has a low cell drift during main discharge phase. To the very end of the cycle cells drifts a little stronger. Performance wise that’s not a problem as it happens within the last seconds before cut-off. With cell #4 being closer to the rest, we would see really good results right here.

Temperature Development

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

All temperature probes reported values below cut-off point at 58°C. Max. temp during discharge was around 55.0 °C on top of pack. Note that heating of stressed LiPo packs will continue for some more time even when load is cut.

Market Comparison

The following chart shows all reviewed LiPos in the same product segment for direct comparison of performance. Higher values under load are better.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Constant 25 C Discharge

Pretty much a standard benchmark in the LiPo industry.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Cut-Off /warning value for this battery should be chosen 3.5 V minimum. After this point voltage drops very, very quick. The battery provided 656 mAh (65,6 %) during the 25 C discharge. Again cell number four gave up first.

Market Overview

Comparison of different reviewed <=1000 mAh batteries under 25 C load.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Dynamic Load Testing

The dynamic load testing setting consists of two separate discharge scenarios that have been developed of two different real-life FPV flights. Pattern one represents a high speed low proximity flight around the open field with some hovering to the end. Average load is around 22 A. Second pattern is a free-style flight around trees in the park with some current spikes near 70 A. Average load on this flight is around 13 A due to longer floating periods.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Capacity Usage

During the test of pattern 1 the pack delivered 640 mAh. This is 64 % of nominal capacity. Average at most. In patter 2 testing 636 mAh (63.6 %) could be used until first cell reached cut-off voltage. That’s below average. High current spikes aren’t exactly friends with the 1000 mAh version of the 4S MRP battery.

Market Comparison

The following charts give an overview of all tested packs in the <=1000 mAh class so far.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

The last chart of this review sums up the usable capacity during all four load scenarios. Please note that this is only the capacity consumed by the electronic load! There are losses due to heating of the pack, which could be approximated (see testing methodology page). All four tests are cut when any cell goes below cut-off voltage of 3,3 V (or pack goes above 58 °C on any of the three probes). If you would push further and go down to 3,0 V/cell you will be able to squeeze out some mAh more, but at the cost of excessive heat generation and shortening of pack life-span. This value will most likely differ from what you get when flying on a quad as most people don’t monitor voltage on a per cell basis and therefore don’t even notice if voltage drops below 3,3 V/cell during punsh-outs (what’s not necessarily a good thing, though). For comparison, used capacity until 3,3 V/cell is reached is the base line in all battery reviews on Drone-Zone.de.

Google Docs

Mit dem Laden des Diagramms akzeptieren Sie die Datenschutzerklärung von Google.
Mehr erfahren

Diagramm laden

Conclusion

The MRP 4S 1000 mAh 65-130 C battery is a usual sized pack with an ordinary capacity to weight ratio of 8.26 mAh/g. The pack has compact measurement and therefor will fit perfectly on anything in the 150 to 180 mm frame segment. There is no need to complain about outer appearance or build quality. This battery fells high quality. The IR measurements show a „true C-rating“ of around 37 C. Looking at the average performance of the battery during the various tests a 45 C sticker would have been more appropriate. Voltage will sag quite substantially when higher current spikes occur. Keep constant loads below 35 C and you will be golden. This will be enough for a lot of applications. Don’t worry about the fact that the battery will become a little bigger under high loads. This is just the type of cell chemistry working. After a short cool down period the pack is back to normal again. Other manufacturers try to prevent this by the integration of two thin metal plates on each side to hold the cells together even more firmly. Average voltage stability and recovery rates are good, absolutely nothing to complain. Temperature development stayed within the safe zone over the whole discharge process. The pricing of around 25 € is a little too far away from the 850 mAh version (~16.50 €) which almost plays in the same performance class.

Other packs of this line up reviewed:

Bleibt in Kontakt!

Wenn ihr über die neuesten Drohnen-News, Drohnen-Leaks, Drohnen-Gerüchte, Drohnen-Guides und Drohnen-Testberichte auf dem Laufenden bleiben möchtet, dann folgt uns gerne auf unseren Social-Media-Kanälen!

Außerdem freuen wir uns natürlich über eure Nachrichten oder Fragen in den Kommentaren!


Hinweis: Mit Sternchen (*) markierte Links sind Affiliate-Links / Partnerlinks. Mit einem Kauf über diesen Link erhalten wir als Seitenbetreiber eine Verkaufsprovision. So kannst du Drone-Zone.de ganz einfach unterstützen. Bitte beachtet, dass es sich bei Drone-Zone um eine reine Website zur Information und keinen Online-Shop handelt. Ihr könnt über unsere Seite keine Kaufverträge über die dargestellten Artikel abschließen und auch keine persönliche Beratung hierzu in Anspruch nehmen. Mehr Informationen dazu findest du hier.

Avatar-Foto

Nils Waldmann

Hi, ich bin Nils! Ich bin leidenschaftlicher Modellbauer, Hobby-Fotograf, Akku-Liebhaber und RC-Pilot. Ich berichte hier über die neusten Entwicklungen in der Drohnen-Branche und kümmere mich um detaillierte Anleitungen, Guides und Testberichte.

Schon gesehen?

DroneLab 4S 1300 mAh 50-100C - Front Side

Batter review: Drone Lab 4S 1300 mAh 50-100C

UK distributor and RC manufacturer RadioC has its newest Drone Lab lipo packs out on the market. The Drone Lab series is specifically designed for use in race quads. This ... jetzt lesen!

CRating Lipo Was ist das

Wissen: Was ist das C-Rating eines LiPo-Akkus?

In diesem Artikel erklären wir dir, was es mit dem C-Rating von Lipos auf sich hat. Du erfährst, was die C-Rating-Angabe für Akkus bedeutet und worauf du achten solltest. Kurz ... jetzt lesen!

Tattu R-Line 4S 1550 mAh 95 C - Front View

Battery review: Tattu R-Line 4S 1550 mAh 95 C (V 1.0)

I finally got my hands on the newest battery product from Gens Ace. This review is looking at the 1550 mAh version of the new Tattu R-Line 4S 95 C pack.

SLS NOC 4S 1800 mAh 2N - Front

Battery review: SLS NOC Race 4S 1800 mAh 2N

We are proud to finally present you our review of the new SLS NOC Race FPV LiPo batteries. Stefans Lipo Shop has offered the cells for quite some time now. ... jetzt lesen!

Schreibe einen Kommentar